Classes

Under construction !

Professors in MIT CRPG regularly teach the following four classes

22.05 Neutron Science and Reactor Physics (undergraduate)

Introduces fundamental properties of the neutron. Covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. Emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.

22.211 Nuclear Reactor Physics I (graduate)

Provides an overview of reactor physics methods for core design and analysis. Topics include nuclear data, neutron slowing down, homogeneous and heterogeneous resonance absorption, calculation of neutron spectra, determination of group constants, nodal diffusion methods, Monte Carlo simulations of reactor core reload design methods.

22.212 Nuclear Reactor Analysis II (graduate)

Addresses advanced topics in nuclear reactor physics with an additional focus towards computational methods and algorithms for neutron transport. Covers current methods employed in lattice physics calculations, such as resonance models, critical spectrum adjustments, advanced homogenization techniques, fine mesh transport theory models, and depletion solvers. Also presents deterministic transport approximation techniques, such as the method of characteristics, discrete ordinates methods, and response matrix methods.

22.213 Nuclear Reactor Physics III (graduate)

Covers numerous high-level topics in nuclear reactor analysis methods and builds on the student's background in reactor physics to develop a deep understanding of concepts needed for time-dependent nuclear reactor core physics, including coupled non-linear feedback effects. Introduces numerical algorithms needed to solve real-world time-dependent reactor physics problems in both diffusion and transport. Additional topics include iterative numerical solution methods (e.g., CG, GMRES, JFNK, MG), nonlinear accelerator methods, and numerous modern time-integration techniques.

Lecturers from other universities and national labs are regularly invited to teach :

22.S902 Special topics in Nuclear Science and Engineering